Предмет: Алгебра, автор: kotdasa57

Обчисліть значення тригонометричних функцій аргументу а, якщо:
cos\alpha =-\frac{2}{7} і \frac{\pi }{2}\  \textless \ \alpha \  \textless \ \pi.

Ответы

Автор ответа: Universalka
1

α -  угол второй четверти значит : Sinα > 0 , tgα < 0 , Ctgα < 0 .

\displaystyle\bf\\Cos\alpha =-\frac{2}{7} \\\\\\Sin\alpha =\sqrt{1-Cos^{2}\alpha  } =\sqrt{1-\Big(-\frac{2}{7} \Big)^{2} } =\sqrt{1-\frac{4}{49} } =\\\\\\=\sqrt{\frac{45}{49} } =\frac{3\sqrt{5} }{7} \\\\\\tg\alpha =\frac{Sin\alpha }{Cos\alpha } =\frac{3\sqrt{5} }{7} :\Big(-\frac{2}{7} \Big)=-\frac{3\sqrt{5} \cdot 7}{7\cdot 2}=-\frac{3\sqrt{5} }{2}

\displaystyle\bf\\Ctg\alpha =\frac{1}{tg\alpha } =1:\Big(-\frac{3\sqrt{5} }{2} \Big)=-1\cdot\frac{2}{3\sqrt{5} } =\\\\\\=-\frac{2\cdot\sqrt{5} }{3\sqrt{5} \cdot\sqrt{5} } =-\frac{2\sqrt{5} }{15} \\\\\\Otvet \ : \ Sin\alpha =\frac{3\sqrt{5} }{7}  \  \ ; \  \ tg\alpha =-\frac{3\sqrt{5} }{2}  \  \ ; \  \ Ctg\alpha =-\frac{2\sqrt{5} }{15}


kotdasa57: дякую!!
Похожие вопросы
Предмет: География, автор: davydovatamara626