Предмет: Алгебра, автор: akmdnepr

4. Розв’яжіть рівняння: |2х−4у−10|+(3х+у−1)2=0; х2−6х+у2−14у+58=0.

Ответы

Автор ответа: gasimovatoma
1

Ответ:

Розглянемо перше рівняння:

|2х−4у−10| + (3х+у−1)² = 0

Оскільки квадрат числа завжди не менше нуля, то другий доданок у цьому рівнянні завжди буде не менше нуля. Тому щоб сума дорівнювала нулю, перший доданок має бути рівним нулю:

|2х−4у−10| = 0

Якщо аргумент модуля дорівнює нулю, то модуль теж дорівнює нулю. Тому маємо два випадки:

2х - 4у - 10 = 0

або

-(2х - 4y - 10) = 0

Розв'язуючи перше рівняння, знаходимо:

2х - 4y = 10

x - 2y = 5 (поділили обидві частини на 2)

Розв'язавши друге рівняння, отримуємо:

x^2 - 6x + y^2 - 14y + 58 = 0

(x - 3)^2 - 9 + (y - 7)^2 - 49 + 58 = 0 (доповнили до повної квадратичної форми)

(x - 3)^2 + (y - 7)^2 = 0

Оскільки сума квадратів двох дійсних чисел може дорівнювати нулю лише тоді, коли кожне з цих чисел дорівнює нулю, маємо:

x - 3 = 0

y - 7 = 0

Отже, розв'язком системи будуть значення x=3 та y=7. Підставляючи їх до початкових рівнянь, перевіряємо, що вони задовольняють обидва рівняння.

Похожие вопросы
Предмет: Информатика, автор: tanyadementeva08
Предмет: Английский язык, автор: amangeldikuralaj671
Предмет: Алгебра, автор: roka6869