5 До кола в центром у точці О з точки А поза колом проведено дві дотичні АВ І АС (точки ВiС точки дотику).
1) Відрізок, що з'єднує точки дотику, ділить відрізок АО на впіл. Знайдіть кут ВАС.
ПОМОГИТЕ ПЖЖЖЖЖ ПРОШУ ПЖЖЖЖ ПЖЖЖ ПЖЖЖЖ ПОЖАЙЛУСТА СРОЧНОООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООО!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ответы
Ответ:
Оскільки дотичні до кола є перпендикулярними до відрізка, що з'єднує центр кола і точку дотику, то відрізок, що з'єднує точки дотику, буде серединним перпендикуляром до відрізка АО. Отже, він ділить відрізок АО навпіл.
Таким чином, АВ = АС = АО / 2.
Трикутник АВС є рівнобедреним, оскільки він містить дві рівні сторони АВ та АС, тому кути АВС та АСВ також рівні між собою.
Крім того, так як дотичні до кола є перпендикулярними до відрізка, що з'єднує центр кола і точку дотику, кути ABV та ACV є прямими кутами.
Отже, ми маємо трикутник АВС з кутом АВС = АСВ = 90 градусів та АВ = АС = АО / 2.
Застосуємо теорему косинусів для трикутника АВС:
cos ВАС = (AB² + AC² - BC²) / (2AB * AC),
де BC - відрізок, що з'єднує точки дотику дотику на колу. Оскільки відрізок, що з'єднує точки дотику, є серединним перпендикуляром до відрізка АО, то BC дорівнює ОС.
Так як ОС є радіусом кола, а АО - діаметром, то ОС = АО / 2. Отже, BC = ОС = АО / 2.
Підставляємо відомі значення:
cos ВАС = (AB² + AC² - BC²) / (2AB * AC) = (АО²/4 + АО²/4 - АО²/4) / (2 * АО²/4) = 1/2.
Отже, кут ВАС дорівнює 60 градусів (так як cos 60 градусів = 1/2).