Предмет: Математика, автор: sahyltaj

8. В коробке 7 шариков. Из них - 3 синих и 4 красных. Сколько шари- ков нужно взять не глядя, чтобы среди них был хотя бы один красный?​


katiabiletska2: Наверное 4

Ответы

Автор ответа: beatricecooltop
1

Пошаговое объяснение:

Для решения этой задачи можно использовать противоположное событие. Вероятность взять шарик не глядя и не получить красный равна отношению числа некрасных шариков к общему числу шариков:

P(не красный) = 3/7

Тогда вероятность взять хотя бы один красный шарик равна:

P(хотя бы 1 красный) = 1 - P(не красный) = 1 - 3/7 = 4/7

Таким образом, чтобы гарантированно взять хотя бы один красный шарик, нужно взять любые 4 шарика не глядя

Автор ответа: artemgusevvit
1

Ответ:

Чтобы ответить на этот вопрос, можно воспользоваться противоположным событием, то есть найти вероятность того, что среди взятых шариков не будет красного, и затем вычесть её из 1.

Вероятность выбрать синий шарик при первом извлечении равна 3/7, так как в коробке 3 синих шарика из общего количества в 7 шариков. Затем, если первый шарик был синим, вероятность выбрать ещё один синий шарик на следующей попытке уменьшится до 2/6 (после извлечения одного шарика останется 6 шариков, из которых 2 синих), и т.д.

Таким образом, вероятность того, что мы выберем только синие шарики при неограниченном количестве попыток, равна произведению вероятностей выбора каждого следующего синего шарика:

3/7 × 2/6 × 1/5 × ... = (3 × 2 × 1) / (7 × 6 × 5 × ...) = 1/35

Следовательно, вероятность выбрать хотя бы один красный шарик равна:

1 - 1/35 = 34/35

Таким образом, чтобы гарантированно выбрать хотя бы один красный шарик, нужно взять как минимум один шарик.

Пошаговое объяснение:


sahyltaj: эх
sahyltaj: мне не надо
Похожие вопросы