Предмет: Геометрия, автор: reygen

..............................

Приложения:

Ответы

Автор ответа: siestarjoki
1

∠ADB=90. Отрезок AB виден из точки D под прямым углом, следовательно точка D лежит на окружности диаметром AB.

∠DCB=∠DAB. Отрезок DB виден из точек C и A под равным углом, следовательно точки D-A-C-B лежат на одной окружности.

Т.е. xорда СD пересекает диаметр AB в точке X.

CD/AB =13√10/50

Пусть CD=13√10 ; AB=50

AX/BX=4

Тогда AX=40 ; BX=10

AX*XB=CX*XD (т об отрезках пересекающихся хорд)

CX и XD - корни

т Виета: CX+XD=13√10 ; CX*XD=40*10

t^2 -13√10 t +400 =0 => t= 13√10+-3√10 /2

={5√10; 8√10}

Имеем два решения - CD и D1С1 - симметричных относительно AB.

Нас интересуют углы CDB и C1D1B.

◡C1B=◡DB => ∠C1D1B=∠DAB

OM⊥CD (перпендикуляр из центра к хорде), CM=CD/2

MX =CM-CX =13√10/2 -5√10 =3√10/2

OX=OB-BX=25-10=15

cos(OXM) =MX/OX =3√10/2*15 =1/√10

△DAX, т косинусов

AD^2 =AX^2+DX^2-2AX*DX*cosX =1600+640-2*40*8√10/√10 =1600

=> AD=40

cos(DAB)=AD/AB=4/5 => △ABD - египетский => tg(DAB)=3/4 =tg(C1D1B)

AD=AX, △DAX-р/б

A/2 =90-∠ADX =∠CDB

tg(CDB) =tg(A/2) =(1-cosA)/sinA =(1 -4/5) :3/5 =1/3

Ответ: tg(CDB)+tg(C1D1B) =1/3 +3/4 =13/12

Приложения:

ГАЗ52: 29. Точки А, В, С и D на плоскости так, что НАЙТИ сумму всех возможных значений tg
Похожие вопросы
Предмет: География, автор: irene9988776655
Предмет: Алгебра, автор: aisezimyusubjanova09
Предмет: Алгебра, автор: sanj3r