Предмет: Геометрия, автор: vcsko

У прямокутному трикутнику MKN гіпотенуза KM=18см кут M =60°. Знайти катет MN.

Ответы

Автор ответа: sprikeyt
0

Для решения задачи воспользуемся теоремой косинусов для нахождения катета MN. Теорема косинусов утверждает, что в любом треугольнике со сторонами a, b и c и углом α против стороны c выполнено равенство:

c² = a² + b² - 2ab cos α

Применяя теорему косинусов к треугольнику MKN, получим:

MN² = MK² + KN² - 2MKKNcos M

Так как MKN - прямоугольный треугольник, то KN = MK*tg M. Подставим это выражение в предыдущую формулу:

MN² = MK² + MK²tg²M - 2MK²cos M*tg M

Вынесем MK² за скобки:

MN² = MK²(1 + tg²M - 2cos Mtg M)

Так как tg 60° = √3, а cos 60° = 0.5, то:

MN² = MK²(1 + 3 - √3) = MK²(4 - √3)

Известно, что KM = 18 см, а угол M равен 60°, следовательно, сторона MK равна:

MK = KM*cos M = 18 см * 0.5 = 9 см

Теперь можем вычислить катет MN:

MN = √(MK²(4 - √3)) = √(9²(4 - √3)) = √(729 - 243√3) ≈ 21,24 см

Ответ: катет MN прямоугольного треугольника MKN равен приблизительно 21,24 см.

Похожие вопросы
Предмет: Математика, автор: d20148352
Предмет: История, автор: viktoriaholovai03
Предмет: Математика, автор: uhanb2388