Предмет: Алгебра, автор: NeZnayMatematiky

Сократить дробь. (СРОЧНО, ЗАДАНИЕ НА ФОТО!!)​

Приложения:

Ответы

Автор ответа: vadikbrogemes
1

Ответ:

Для сокращения дроби (2(y^2 + 5y - 126))/(y^2 - 5y + 36) можно разложить числитель и знаменатель на множители и сократить общие множители. В данном случае можно заметить, что числитель и знаменатель имеют общий множитель 2:

(2(y^2 + 5y - 126))/(y^2 - 5y + 36) = (2(y^2 + 5y - 126))/(y^2 - 5y + 36)

Теперь можно дальше упрощать числитель и знаменатель, если это возможно.

Для сокращения дроби (B^2 - B - 110)/(22 + 9B - B^2) можно также разложить числитель и знаменатель на множители и сократить общие множители. В данном случае можно заметить, что числитель и знаменатель имеют общий множитель B - 11:

(B^2 - B - 110)/(22 + 9B - B^2) = ((B - 11)(B + 10))/((B - 11)(-B - 22))

Здесь общий множитель (B - 11) сокращается, и окончательный результат будет:

((B - 11)(B + 10))/((B - 11)(-B - 22)) = (B + 10)/(-B - 22)

Похожие вопросы