Предмет: Другие предметы,
автор: Slondimonpetrikashka
Обчисли меншу сторону і площу прямокутника, якщо його більша сторона дорівнює 63–√ см, діагональ дорівнює 12 см і утворює з більшою стороною кут 30 градусів.
Ответы
Автор ответа:
0
Ответ:
Нехай меньша сторона прямокутника дорівнює x см. За теоремою Піфагора, відносно діагоналі, відомо, що:
$x^2 + (63 - \sqrt{3})^2 = 12^2$
Розв'язавши це рівняння, отримаємо:
$x = \sqrt{12^2 - (63 - \sqrt{3})^2} \approx 5.95 \text{ см}$
Далі, використовуючи формулу для площі прямокутника:
$S = x(63 - \sqrt{3}) \approx 375.7 \text{ см}^2$
Отже, менша сторона прямокутника дорівнює близько 5.95 см, а його площа близько 375.7 см².
Объяснение:
Slondimonpetrikashka:
Ти дур**** ? Я і сам можу з чату джіпіті списать такий твет
Похожие вопросы
Предмет: Биология,
автор: lioncub13sk13
Предмет: История,
автор: i52148723
Предмет: Алгебра,
автор: pavlovakata453
Предмет: Русский язык,
автор: EgoLubimov