Предмет: Алгебра, автор: Fleisch

Пусть неотрицательные числа x, y, z связаны соотношением x+y+z=1. Докажите, что xy+yz+zx≤1/3.

Ответы

Автор ответа: dtnth
0

x^2+y^2>=2xy (неравенство Коши - между среднем арифмитическим и средним геометрическим или из (x-y)^2>=, x^2-2xy+y^2>=0, x^2+y^2>=2xy )

y^2+z^2>=2xz

x^2+z^2>=2xz

сложив

2(x^2+y^2+z^2)>=2*(xy+yx+zx)

сократив на 2

x^2+y^2+x^2>=xy+yx+zx       (*)

 

по формуле квадарата тричлена, и исполльзуя неравенство (*)

(x+y+z)^2=x^2+y^2+z^2+2(xy+zy+zx)>=xy+xz+xz+2(xy+zx+xz)=3(xy+yz+zx)

 

подставляя данное условие

1^2>=3(xy+yz+zx) или

1>=3(xy+zx+zy)

или xy+yz+zx≤1/3. что и требовалось доказать

 

Похожие вопросы
Предмет: Алгебра, автор: utteriyi5hro6d