Предмет: Геометрия, автор: Kamuikakashi

4.18. Докажите, что треугольник АВС-равнобедренный, если 1)А(0;1), В(1;-4), С(5;х); 2)А(-4;1), В(-2;4), С(0;х)
Что делать с иксом? Помогите​

Ответы

Автор ответа: gamesfarhad
4

Чтобы доказать, что треугольник АВС является равнобедренным, необходимо показать, что две стороны этого треугольника имеют одинаковую длину. Для этого необходимо вычислить длины сторон треугольника и сравнить их.

Для треугольника АВС с вершинами А(0;1), В(1;-4), С(5;х), мы можем вычислить длины сторон AB, AC и BC, используя формулу расстояния между двумя точками:

AB = √[(1-0)^2+(-4-1)^2] = √26

AC = √[(5-0)^2+(х-1)^2]

BC = √[(5-1)^2+(х+4)^2]

Чтобы доказать, что треугольник равнобедренный, необходимо показать, что две из этих сторон равны. Для этого сравним длины сторон AB и BC:

AB = √26

BC = √[(5-1)^2+(х+4)^2] = √[(х+9)^2]

AB = BC, если (х+9)^2 = 26

Решая это уравнение, мы находим, что х = -7 или х = 5. Таким образом, треугольник АВС равнобедренный, если х равен -7 или 5.

Для треугольника АВС с вершинами А(-4;1), В(-2;4), С(0;х), мы можем вычислить длины сторон AB, AC и BC:

AB = √[(-2+4)^2+(4-1)^2] = √13

AC = √[(-4-0)^2+(1-х)^2]

BC = √[(-2-0)^2+(4-х)^2]

Для того, чтобы доказать, что треугольник равнобедренный, необходимо показать, что две из этих сторон равны. Для этого сравним длины сторон AB и BC:

AB = √13

BC = √[(-2-0)^2+(4-х)^2] = √[(4-х)^2+4]

AB = BC, если (4-х)^2+4 = 13

Решая это уравнение, мы находим, что х = -2 или х = 10. Таким образом, треугольник АВС равнобедренный, если х равен -2 или 10.


Kamuikakashi: спасибо, но как получились эти ответы? можете объяснить, пожалуйста?
alanamuhamedzanova04: спасибо
m6527728: Салам алейкум
m6527728: От души
Похожие вопросы
Предмет: Математика, автор: raihanamrina