Предмет: Алгебра, автор: darkaned

Дам 50 баллів будь-ласка допоможіть із завданням

Потрібно звільнитися від ірраціональності в знаменнику дробу

Приложения:

Ответы

Автор ответа: yanata101
0

 \frac{2}{ \sqrt{6}  -  \sqrt{2} }  =  \frac{2( \sqrt{6}  +  \sqrt{2} )}{ (\sqrt{6}  -  \sqrt{2} ) \times ( \sqrt{6}  +  \sqrt{2} )}  = \frac{2( \sqrt{6}  +  \sqrt{2} )}{ ( { \sqrt{6} })^{2}  -  {( \sqrt{2} )}^{2}  } = \frac{2( \sqrt{6}  +  \sqrt{2} )}{ 6 - 2 } = \frac{2( \sqrt{6}  +  \sqrt{2} )}{ 4 } = \frac{\sqrt{6}  +  \sqrt{2} }{ 2}

 \frac{x}{2 \sqrt{x}  + 1}  =   \frac{x(2 \sqrt{x}   -  1)}{(2 \sqrt{x}  + 1)(2 \sqrt{x}   -  1)} = \frac{x(2 \sqrt{x}   -  1)}{ {(2 \sqrt{x} )}^{2}  -  {1}^{2} } = \frac{x(2 \sqrt{x}   -  1)}{ 4x - 1 }

Похожие вопросы
Предмет: Математика, автор: tkacenkoarina42