Предмет: Алгебра, автор: Анисимова1995

найти производную функции 3sin2xcosx

Ответы

Автор ответа: mbart
0

1) Применяет правило дифференцирования для произведения функций и сложной функции:

                           (3sin2xcosx)' = 3*(sin2xcosx)' = 3* ((sin2x)' *cosx+ (cos x)' * sin 2x) =

                            = 3* (2*cos 2x*cos x - sin 2x*sin x)= 3*( cos 2x*cos x + cos 2x*cos x -                             -sin 2x*sin x) = 3* cos 2x*cos x +cos 3x . 

 

Похожие вопросы
Предмет: Английский язык, автор: dashasazonova1811
Предмет: Математика, автор: Demix