Предмет: Математика, автор: inka382

Помогите пожалуйста!!!

В прямоугольном треугольнике ABC катет
AB = 30 см, радиус окружной линии, обведенной вокруг треугольника, равен 17 см. Найти Pabc

Ответы

Автор ответа: indikot51
0

Поскольку треугольник ABC прямоугольный, гипотенуза AC является диаметром окружности, описанной вокруг треугольника. Таким образом, AC = 2R, где R - радиус окружности. В данном случае R = 17 см, поэтому AC = 34 см.

Теперь воспользуемся теоремой Пифагора для прямоугольного треугольника ABC:

AB^2 + BC^2 = AC^2

30^2 + BC^2 = 34^2

900 + BC^2 = 1156

BC^2 = 256

BC = 16 см

Теперь найдем периметр треугольника Pabc:

Pabc = AB + BC + AC

Pabc = 30 + 16 + 34

Pabc = 80 см

Автор ответа: kilivnikcostya20
0

Відповідь:

80см

Покрокове пояснення:

1)Короче гипотенуза треугодьника в круге єто диаметр (диаметр в два раза больше радиуса)

2) Дальше по теореме пифагора находим второй катет и потом вычисляем периметр

Похожие вопросы
Предмет: Алгебра, автор: sveeta1997
Предмет: Математика, автор: ppnkpr