Предмет: Геометрия, автор: ctohto53

помогите плиз, очень срочно.​

Приложения:

Ответы

Автор ответа: romahod2017
1

Відповідь: а і b є перпендикулярними.

Пояснення:

Для того, щоб вектори а і b були перпендикулярні, їх скалярний добуток має бути дорівнювати нулю:

а·b = (-х) * y + у * x = -хy + xy = (x - y) * (-х) + xy

Щоб довести, що а і b перпендикулярні, необхідно довести, що цей вираз завжди дорівнює нулю.

Розглянемо два випадки:

x ≠ y

У цьому випадку (x - y) ≠ 0, тому ми можемо розділити на цей множник:

(x - y) * (-х) + xy = -хx + хy + xy = -х(x + y) + xy = -х(x + y - 1)

Якщо x ≠ y, то x + y - 1 не може бути рівним нулю (адже x і y не дорівнюють нулю), тому множник -х(x + y - 1) не може дорівнювати нулю. Отже, а і b є перпендикулярними.

x = y

У цьому випадку (x - y) = 0, тому весь вираз a·b дорівнює нулю:

(x - y) * (-х) + xy = 0

Отже, в обох випадках доведено, що вектори а (-х; у) і b(y; x) є перпендикулярними.

Похожие вопросы
Предмет: Математика, автор: Аноним