Знайдіть похідну функції
y= [8x) ^5+3x-5 y=sinx+5cosx
y= [7x)^(-3)+6tgx
y=x^12+ [8x) ^3- [2x] ^2-cosx
y=- [14x)^(-4)+6x-4 y=2vx- [12x)^(-3)
Ответы
Объяснение:
y= [8x) ^5+3x-5 y=sinx+5cosx y= [7x)^(-3)+6tgx y=x^12+ [8x) ^3- [2x] ^2-cosx y=- [14x)^(-4)+6x-4 y=2vx- [12x)^(-3)
I assume you want me to differentiate each of these functions with respect to x. I will use the power rule, product rule, chain rule, and trigonometric differentiation as needed to find the derivatives.
y = (8x)^5 + 3x - 5
Using the power rule and the constant multiple rule, the derivative of this function is:
y' = 5(8x)^4(8) + 3 = 32768x^4 + 3
y = sin(x) + 5cos(x)
Using the sum rule and the derivatives of sine and cosine, the derivative of this function is:
y' = cos(x) - 5sin(x)
y = (7x)^(-3) + 6tan(x)
Using the power rule, the chain rule, and the derivatives of tangent, the derivative of this function is:
y' = -21(7x)^(-4)sec^2(x) + 6sec^2(x)
y = x^12 + (8x)^3 - [2x]^2 - cos(x)
Using the sum rule, the power rule, the constant multiple rule, and the derivative of cosine, the derivative of this function is:
y' = 12x^11 + 24x^2 - 4x + sin(x)
y = - (14x)^(-4) + 6x - 4
Using the power rule and the constant multiple rule, the derivative of this function is:
y' = 56(14x)^(-5) + 6
y = 2vx - (12x)^(-3)