Предмет: Геометрия, автор: faraon4ikoff2

Дано куб ACMNA1C1M1N1 . Доведіть, що площини AMN1 та А1М1С паралельні​

Ответы

Автор ответа: litvinenkovitalik474
0

Відповідь:

Для того, щоб довести, що площини AMN1 та А1М1С паралельні, необхідно показати, що вони мають однакові нормальні вектори.

Нормальний вектор до площини AMN1 можна знайти, знаючи координати трьох точок на площині. Точки M, N1 і A лежать на площині AMN1, тому можна взяти вектори MA і MN1, і знайти їх векторний добуток:

n1 = MA × MN1

Для цього спочатку знайдемо координати векторів MA і MN1.

Вектор MA = A - M = (-1, 0, 1) - (0, 0, 0) = (-1, 0, 1)

Вектор MN1 = N1 - M = (0, -1, 1) - (0, 0, 0) = (0, -1, 1)

Тоді, знаходячи векторний добуток, маємо:

n1 = MA × MN1 = (-1, 0, 1) × (0, -1, 1) = (-1, -1, 0)

Таким чином, нормальний вектор до площини AMN1 має координати (-1, -1, 0).

Нормальний вектор до площини А1М1С можна знайти аналогічним чином, використовуючи вектори A1M1 і A1C. Вектор A1M1 має такі координати:

A1M1 = M1 - A1 = (1, 0, -1) - (0, 1, 0) = (1, -1, -1)

Вектор A1C має такі координати:

A1C = C - A1 = (1, 1, 1) - (0, 1, 0) = (1, 0, 1)

Тоді нормальний вектор до площини А1М1С можна знайти векторним добутком:

n2 = A1M1 × A1C = (1, -1, -1) × (1, 0, 1) = (-1, -2, -1)

Отже, нормальний вектор до площини AMN1 має координати (-1, -1, 0), а нормальний вектор до площини А1М1С має координати (-1, -2, -1). Якщо звернути увагу, то можна побачити, що ці вектори мають спільні координати

Пояснення


faraon4ikoff2: дякую,може ще поможеж?
litvinenkovitalik474: Так звісно
faraon4ikoff2: глянь у мене в профілі)
Похожие вопросы