Предмет: Алгебра, автор: olecsundru

1.
Знайдіть перший член арифметичної прогресії, якщо сума
перших десяти членів цієї прогресії дорівнює 210, а різниця
прогресії дорівнює -2.

2.
Знайти суму всіх від’ємних членів арифметичної прогресії
-12,4; -12; -11,6…

3.
Знайти значення х, за яких послідовність х-2, 2х, 4х+1 є
геометричною прогресією.


Аноним: напиши свой инст,там решу,данное сообщение не имеет никакой личной информации

Ответы

Автор ответа: denysvarenuk
1

Ответ:

1) Позначимо перший член прогресії як a, а різницю як d. За формулою для суми перших n членів арифметичної прогресії маємо:

S = n(2a + (n-1)d)/2

Підставляємо дані: S = 210, n = 10, d = -2 і отримуємо рівняння:

210 = 10(2a + 9(-2))/2

210 = 10(2a - 18)

21 = 2a - 18

2a = 39

a = 19.5

Отже, перший член прогресії дорівнює 19.5.

2) Дана арифметична прогресія має різницю d = -0.4. Для знаходження суми всіх від’ємних членів прогресії можна використати формулу:

S = n(2a + (n-1)d)/2,

де n - кількість від'ємних членів прогресії, а перший від'ємний член можна знайти з рівності a + (n-1)d = 0. В даному випадку маємо:

a + (n-1)d = 0

-12 + (n-1)(-0.4) = 0

n = 30

Отже, в прогресії 30 від'ємних членів. Підставляємо дані до формули і отримуємо:

S = 30(-12 + (-12 + (30-1)(-0.4)))/2 = -180.

3) За визначенням геометричної прогресії, виконується співвідношення між кожними сусідніми членами прогресії:

a_2/a_1 = a_3/a_2.

Підставляючи дані з умови, маємо:

2x/(x-2) = (4x+1)/2x

Розв'язуємо це рівняння:

4x^2 - 5x - 2 = 0

(x - 2)(4x + 1) = 0

x = 2 або x = -1/4.

Отже, можна вибрати х = 2, щоб послідовність була геометричною прогресією.

Похожие вопросы