Предмет: Геометрия, автор: puskinfederiko

Знайти площу кругового сегмента, обмеженого хордою, довжина якої дорівнює l та дугою, градусна міра якої дорівнює α, якщо: l = 7 см, α = 90°.​

Ответы

Автор ответа: Sashaaaa46
0

Ответ:

Объяснение:

Площа кругового сегмента може бути знайдена залежно від радіуса круга та висоти сегмента. Радіус круга може бути знайдений за формулою:

r = l / 2sіn(α/2)    (це  дріб, все що так написано - дріб!)

де l - довжина хорди, α - градусна міра дуги, що обмежує сегмент.

У даному випадку, довжина хорди l = 7 см, а градусна міра дуги α = 90°. Тому:

r = 7 / (2sіn(90°/2)) = 7 / (2sіn(45°)) ≈ 4.95 см.

Далі, висота сегмента може бути знайдена за формулою:

h = r - √(r² - (l/2)²)

де l - довжина хорди, r - радіус круга.

Підставляючи відповідні значення, маємо:

h = 4.95 - √(4.95² - (7/2)²) ≈ 1.28 см

.Тоді площа кругового сегмента може бути знайдена за формулою:

S = (α/360°) * π * r² - r * h

Підставляючи відповідні значення, маємо:

S = (90°/360°) * π * (4.95 см)² - (4.95 см) * (1.28 см) ≈ 9.22 см².

Отже, площа кругового сегмента, обмеженого хордою довжиною 7 см та дугою градусної міри 90°, дорівнює приблизно 9.22 квадратними сантиметрами.

Похожие вопросы
Предмет: Українська мова, автор: sumilovegor443
Предмет: Қазақ тiлi, автор: diasoni07