Предмет: Математика, автор: usuisisijzjzjjz

длина ребра куба abcdа1b1c1d1, равна 12. вычислите расстояние между прямыми ВС и В1Д1
прошу​

Ответы

Автор ответа: Аноним
0

Рассмотрим плоскость, проходящую через точки B, С и С1. Эта плоскость перпендикулярна прямой ВС и содержит отрезки BC и С1С, которые являются сторонами прямоугольника.

Таким образом, BC = С1С = 12 (так как это стороны куба). Кроме того, так как противоположные стороны прямоугольника параллельны, то прямая, проходящая через вершины В и С1, параллельна прямой, проходящей через вершины С и В1.

Следовательно, расстояние между прямыми ВС и В1Д1 равно расстоянию между параллельными прямыми, проходящими через В и С1, и В1 и Д1, соответственно.

Для вычисления этого расстояния можно использовать теорему Пифагора для треугольника, образованного сторонами куба:

$BD_1^2 = (BC + CD_1)^2 + 12^2$

$BD_1^2 = (12 + 12)^2 + 12^2$

$BD_1^2 = 864$

$BD_1 = \sqrt{864} = 12\sqrt{6}$

Таким образом, расстояние между прямыми ВС и В1Д1 равно $12\sqrt{6}$.

Похожие вопросы
Предмет: География, автор: Аноним