Через точку F, що лежить поза площиною трикутника АВС, проведено пряму АК, перпендикулярну до прямих АВ і АС. Пряма АК лежить у площині трикутника АВС. Довести, що пряма АF і АК перпендикулярні.
Ответы
Ответ:
Дивись, тут не складно, я все детально розписав, дивись пояснення
Объяснение:
Спочатку ми можемо помітити, що так як точка F лежить поза площиною трикутника, то лінія АF перетинає площину трикутника у точці F і, отже, утворює кут з площиною трикутника.
Далі, так як пряма АК перпендикулярна до прямих АВ і АС, то вона лежить у площині, яка проходить через сторону АВ і її середину (ознака перпендикуляра до площини).
Також помітимо, що пряма, що проходить через точки А та F, є нормаллю до площини, що містить сторону АВ і її середину, оскільки ця пряма проходить через середину сторони АВ і перпендикулярна до неї.
Отже, пряма АК лежить у площині, що перпендикулярна до площини, яка містить сторону АВ і її середину. Оскільки пряма АФ є нормаллю до цієї площини, то пряма АФ також перпендикулярна до прямої АК.
Отже, пряма АФ і АК є перпендикулярними, що і треба було довести.