Предмет: Алгебра,
автор: melfoy
З'ясувати, яка з точок М1, (7,33/4,4), М2, (11/4,2,-15), М3, (3,-5, 55/4)
лежить на еліпсоїді x^2/144 + y^2/100 +z^2/275 = 1, яка всередині нього, а яка зовні.
Ответы
Автор ответа:
0
Для того щоб з'ясувати, яка з точок лежить на еліпсоїді, потрібно підставити їх координати в рівняння еліпсоїда і перевірити, чи буде виконуватись рівність.
Для М1:
x^2 /144 + y^2/100 +z^2/275 = (7^2/144) + (33/4^2/100) + (4.4^2/275) = 1.
Отже, точка М1 лежить на еліпсоїді.
Для М2:
x^2 /144 + y^2/100 +z^2/275 = (11/4^2/144) + (2^2/100) + (-15^2/275) ≈ 1.013
Отже, точка М2 лежить зовні еліпсоїда.
Для М3:
x^2 /144 + y^2/100 +z^2/275 = (3^2/144) + (-5^2/100) + (55/4^2/275) ≈ 0.873
Значить, точка М3 лежить усередині еліпсоїда.
Похожие вопросы
Предмет: Биология,
автор: Huma12
Предмет: Литература,
автор: poklip99diana78
Предмет: Физика,
автор: SanDay1331
Предмет: Математика,
автор: Leonti666
Предмет: Окружающий мир,
автор: alekhina1811