Предмет: Геометрия, автор: alexilaiho

С вершины вытянутого угла KLM протянуты лучи LT и LR таким образом, что ∠ TLM = ∠ KLR (см. рис.). Докажи, что ∠ KLT = ∠ RLM! это углы, не треугольники( помогите пожалуйста

Ответы

Автор ответа: yaroslav2009123
1

Ответ:

Для доказательства равенства углов ∠KLT и ∠RLM воспользуемся свойствами параллельных прямых и углами, образованными пересечением этих прямых.

По условию задачи, лучи LT и LR проходят через вершину угла KLM и образуют со сторонами угла дополнительные углы, равные друг другу: ∠TLM = ∠KLR.

Рассмотрим пару вертикальных углов, образованных пересечением прямых KL и LT, и прямых KL и LR. По свойству вертикальных углов эти углы равны: ∠KLT = ∠MLR.

Также мы можем заметить, что угол RLM является внутренним углом треугольника LRM, а угол KLT является внутренним углом треугольника LKT. Оба треугольника имеют общую сторону - сторону LK.

По теореме об угле при основании, если в треугольнике два боковых отрезка равны, то углы, противолежащие этим отрезкам, тоже равны. Таким образом, углы LKT и LRM равны, так как стороны KT и RM равны.

Итак, мы показали, что ∠KLT = ∠MLR и ∠LKT = ∠LRM. Отсюда следует, что ∠KLT = ∠RLM.

Похожие вопросы
Предмет: Математика, автор: zlatademenko16
Предмет: Русский язык, автор: Weolettaa
Предмет: Алгебра, автор: zasinecmaja