Предмет: Математика, автор: dima05litvinenko26

Скільки різних чисел можливо отримати, переставляючи числа 2 233 344 455?

Ответы

Автор ответа: nowfow
1

Ответ: 39 916 800

Пошаговое объяснение: Можно использовать формулу перестановок с повтореннями для нахождения количества различных перестановок чисел вида 2 233 344 455. В данном случае, у нас есть 11 элементов, из которых 2 повторяются один раз, 3 повторяются два раза, 2 повторяются три раза и 1 повторяется четыре раза. Формула перестановок с повторениями выглядит следующим образом:

n! / (n1! * n2! * ... * nk!),

где n - общее количество элементов, n1, n2, ..., nk - количество повторяющихся элементов.

Подставляя соответствующие значения, получим:

11! / (1! * 2! * 3! * 2! * 1!) = 11! / 12 = 39 916 800

Таким образом, мы можем получить 39 916 800 различных чисел, переставляя элементы числа 2 233 344 455.


dima05litvinenko26: вельми вдячний
Похожие вопросы
Предмет: Алгебра, автор: vlad131010
Предмет: История, автор: alexandrad98