Предмет: Геометрия,
автор: Valenhtaine
Ортогональною проекцією прямокутника, сторони якого дорівнюють 6см і 4см, є чотирикутник, площа якого дорівнює 12 см². Знайти кут між площинами чотирикутників.
Приложения:
Ответы
Автор ответа:
2
Позначимо прямокутник ABCD, де AB = 6 см і BC = 4 см. Його ортогональна проекція утворює чотирикутник A'B'C'D'.
Позначимо кут між площинами прямокутника та його ортогональної проекції як α. Якщо ми знайдемо кут A'CD', то зможемо знайти кут α як його доповнення до 90°.
Площа прямокутника ABCD дорівнює 24 см², тому площа його проекції A'B'C'D' дорівнює половині цієї величини, тобто 12 см².
Звернімо увагу, що кут між вектором AC і вектором CD' дорівнює прямому куту (оскільки прямокутник ABCD перпендикулярний до площини проекції). Так само, кут між вектором A'C і вектором CD' дорівнює прямому куту.
Отже, кут A'CD' дорівнює різниці кутів BCD та BCA', тобто:
A'CD' = BCD - BCA'
Для знаходження кута BCD скористаємося теоремою Піфагора, оскільки трикутник BCD прямокутний:
BD² = BC² + CD²
BD² = 4² + 6²
BD = 2√13
Тепер можна знайти косинус кута BCD:
cos BCD = BC/BD = 4/2√13 = 2√13/13
А для знаходження кута BCA' скористаємося теоремою синусів у трикутнику ABC:
sin BCA' = A'C/BC = 12/10 = 6/5
тому що A'C дорівнює діагоналі прямокутника ABCD, яка має довжину 10 см.
Отже, кут BCA' дорівнює arcsin(6/5).
Тепер ми можемо обчислити кут A'CD':
A'CD' = BCD - BCA'
A'CD' = arccos(2√13/13) - arcsin(6/5)
A'CD' ≈ 25.08°
Оскільки α дорівнює доповненню кута A'CD' до 90°
Позначимо кут між площинами прямокутника та його ортогональної проекції як α. Якщо ми знайдемо кут A'CD', то зможемо знайти кут α як його доповнення до 90°.
Площа прямокутника ABCD дорівнює 24 см², тому площа його проекції A'B'C'D' дорівнює половині цієї величини, тобто 12 см².
Звернімо увагу, що кут між вектором AC і вектором CD' дорівнює прямому куту (оскільки прямокутник ABCD перпендикулярний до площини проекції). Так само, кут між вектором A'C і вектором CD' дорівнює прямому куту.
Отже, кут A'CD' дорівнює різниці кутів BCD та BCA', тобто:
A'CD' = BCD - BCA'
Для знаходження кута BCD скористаємося теоремою Піфагора, оскільки трикутник BCD прямокутний:
BD² = BC² + CD²
BD² = 4² + 6²
BD = 2√13
Тепер можна знайти косинус кута BCD:
cos BCD = BC/BD = 4/2√13 = 2√13/13
А для знаходження кута BCA' скористаємося теоремою синусів у трикутнику ABC:
sin BCA' = A'C/BC = 12/10 = 6/5
тому що A'C дорівнює діагоналі прямокутника ABCD, яка має довжину 10 см.
Отже, кут BCA' дорівнює arcsin(6/5).
Тепер ми можемо обчислити кут A'CD':
A'CD' = BCD - BCA'
A'CD' = arccos(2√13/13) - arcsin(6/5)
A'CD' ≈ 25.08°
Оскільки α дорівнює доповненню кута A'CD' до 90°
Valenhtaine:
дякую
Похожие вопросы
Предмет: Математика,
автор: masterdela2018
Предмет: Русский язык,
автор: ilonavgimar
Предмет: Математика,
автор: masleyanastasia10
Предмет: Обществознание,
автор: hucievaelina9
Предмет: Алгебра,
автор: 666228666228666228