Предмет: Математика,
автор: satilkina28ylia2022
Середнє арифметичне двох чисел дорівнює 8,8. Знайди ці числа, якщо одне з них на 2,9 більше другого.
Ответы
Автор ответа:
0
Позначимо перше число як x, а друге число як y. За умовою задачі маємо таку систему рівнянь:
(1) (x + y) / 2 = 8.8 -- середнє арифметичне чисел x та y дорівнює 8.8
(2) x = y + 2.9 -- одне з чисел на 2.9 більше другого
Застосуємо друге рівняння до першого:
( (y + 2.9) + y ) / 2 = 8.8
Розв'яжемо це рівняння:
2y + 2.9 = 17.6
2y = 14.7
y = 7.35
Тоді з рівняння (2):
x = 7.35 + 2.9 = 10.25
Отже, два числа, середнє арифметичне яких дорівнює 8.8, дорівнюють 7.35 та 10.25.
(1) (x + y) / 2 = 8.8 -- середнє арифметичне чисел x та y дорівнює 8.8
(2) x = y + 2.9 -- одне з чисел на 2.9 більше другого
Застосуємо друге рівняння до першого:
( (y + 2.9) + y ) / 2 = 8.8
Розв'яжемо це рівняння:
2y + 2.9 = 17.6
2y = 14.7
y = 7.35
Тоді з рівняння (2):
x = 7.35 + 2.9 = 10.25
Отже, два числа, середнє арифметичне яких дорівнює 8.8, дорівнюють 7.35 та 10.25.
Автор ответа:
0
Відповідь:
x=7.35 - менше число
7.35+2.9=10.25 більше число
Покрокове пояснення:
Нехай менше x, тоді більше x+2,9
можемо скласти рівняння.
(x+x+2,9)/2=8,8
2x +2.9 = 8,8 * 2
2x +2.9 = 17,6
2х = 17,6 -2,9
2x = 14,7
x=14,7 : 2
x=7.35 - менше число
7.35+2.9=10.25 більше число
перевірка:
7.35+10.25=17.6/2=8.8
Похожие вопросы
Предмет: Українська мова,
автор: mariya6490
Предмет: Українська мова,
автор: kolasinickin69
Предмет: Литература,
автор: daramazur33
Предмет: Химия,
автор: ekaaterinaaa