Предмет: Геометрия, автор: viktoria1448

Точка М рівновіддалена від вершин квадрата ABCD. Обґрунтуйте кут між площинами МАВ i АВС.

Ответы

Автор ответа: AcerBoy
0

Ответ:

Оскільки точка М рівновіддалена від вершин квадрата ABCD, то вона лежить на його діагоналі. Нехай МN - діагональ квадрата ABCD, а О - центр квадрата. Оскільки квадрат ABCD є рівнобічним, то ОМ = ОN.

Розглянемо трикутники МАО та МВО. Вони є прямокутними, оскільки АО і ВО - діагоналі квадрата ABCD, а МО - є їхнім перпендикуляром. Крім того, оскільки ОМ = ОN, то трикутники МАО та МВО є піврівні.

Тепер розглянемо площини МАВ та МВС. Вони проходять через спільну пряму МО, тому кут між ними дорівнює куту, що утворюють вектори АВ і ВС відносно точки М.

Трикутники МАО та МВО є піврівні, тому вони мають однаковий кут АМО = ВМО. Також, оскільки квадрат ABCD є рівнобічним, то кути АВС та ВСD також однакові, тобто ВСD = АВС.

Отже, кут між площинами МАВ та МВС дорівнює куту АМО плюс куту ВСD. Зважаючи на те, що АМО = ВМО та ВСD = АВС, отримуємо, що кут між площинами МАВ та МВС дорівнює 2 * АВС.


viktoria1448: так, але потрібно взнати який кут є між цими площинами, а не знаходити його величину(
Похожие вопросы
Предмет: Математика, автор: marichkauliana