Предмет: Алгебра, автор: Aaaaaaaaalisaaaaaaaa

1. Дана функция f (x) =-x²+4x-4 ) Найдите критические точки функции. а) Определите промежутки монотонности. c) Запишите уравнение асимптот функции. Используя результаты задания 1, постройте схематически график функции

даю 20 баллов, кто ответит фигню - блок и жалоба. помогите, пожалуйста ​

Приложения:

Ответы

Автор ответа: roman459
2
а) Критические точки функции - это точки, в которых производная функции равна нулю или не существует. Для функции f(x) = -x² + 4x - 4 производная равна f'(x) = -2x + 4.

Решим уравнение -2x + 4 = 0:
-2x = -4
x = 2

Таким чином, критическая точка функции f(x) - это точка x = 2.

б) Для определения промежутков монотонности нужно проанализировать знак производной функции на каждом интервале между критическими точками и на крайних интервалах.

Критическая точка x = 2 делит ось абсцисс на два интервала: (-∞, 2) и (2, +∞).

На интервале (-∞, 2) производная f'(x) < 0, тобто функция f(x) монотонно убывает.

На интервале (2, +∞) производная f'(x) > 0, тобто функция f(x) монотонно возрастает.

в) Для пошуку асимптот необхідно розглянути границі функції при x -> ±∞.

При x -> ±∞, -x² стає набагато більш значущим, ніж 4x та -4. Тому можна приблизно записати функцію у вигляді f(x) ≈ -x².

Якщо поділити функцію на x при x -> ±∞, отримаємо відповідно дві асимптоти: y = -x та y = -x + 4.

г) Схематичний графік функції f(x) = -x² + 4x - 4:

На графіку зображені критичні точки x = 2, асимптоти y = -x та y = -x + 4, а також напрямки монотонності на різних інтервалах.
Приложения:

Aaaaaaaaalisaaaaaaaa: спасибо большое ❤
Похожие вопросы
Предмет: Алгебра, автор: kv27072021