Із двох міст, відстань між якими дорівнює 6 км, виїхали назустріч один
одному легковий і вантажний автомобілі, які зустрілися на середині шляху,
причому легковий автомобіль вийшов на 15 хв пізніше вантажівки. Якби
вони виїхали одночасно, то зустрілися б через 36 хв. Знайдіть швидкість
кожного автомобіля.
Ответы
Відповідь:
Швидкість легкового автомобіля дорівнює 6 км/год., а швидкість вантажного автомобіля дорівнює 4 км/год.
Пояснення:
Позначимо як Х - швидкість легкового автомобіля та як У - швидкість вантажного автомобіля.
Використаємо рівняння, що зв'язує між собою відстань ( S ), швидкість ( V ) та час ( T ):
S / V = T
Якщо відстань поділити на швидкість то отримаємо час подолання цієї відстані.
1 умова.
Легковий і вантажний автомобілі зустрілися на середині шляху ( проїхали по 6 / 2 = 3 км. ), легковий автомобіль вийшов на 15 хв. ( або на 1/4 часу ) пізніше вантажівки.
Час, що використав легковий автомобіль - це ( 3 / Х ), а час, що використав вантажний автомобіль - це ( 3 / У ).
Час, що використав вантажний автомобіль на 1/4 часу більший за час, що використав легковий автомобіль.
Маємо рівняння:
3/У = 3/Х + 1/4 ( 1 )
2 умова.
Якби вони виїхали одночасно, то зустрілися б через 36 хв. ( або 6/10 часу ).
Швидкість зближення двох автомобілей дорівнює сумі їх швидкостей ( Х + У ( автомобілі виїхали назустріч один одному ).
Маємо рівняння:
6 / ( Х + У ) = 6/10 ( 2 )
З рівняння ( 2 ):
6 × 10 = 6 × ( Х + У )
Розділимо обидві частини на шість:
Х + У = 10
Виразимо У через Х:
У = 10 - Х ( 3 )
З рівняння ( 1 ):
3/У - 3/Х = 1/4
1/У - 1/Х = 1/12 ( 4 )
Підставимо У з рівняння ( 3 ) до рівняння ( 4 ), отримаємо:
1/(10 - Х) - 1/Х = 1/12
( Х - ( 10 - Х ) ) / ( Х × ( 10 - Х ) ) = 1/12
Х - 10 + Х = 1/12 × ( 10Х - Х² )
12 × ( 2Х - 10 ) = 10Х - Х²
Х² - 10Х + 24Х - 120 = 0
Х² + 14Х - 120 = 0
Отримали квадратне рівняння.
а = 1
в = 14
с = -120
Знайдемо діскримінант:
D = в² - 4ас = 14² - 4 × 1 × ( -120 )
D = 196 + 480 = 676
Знайдемо корні квадратного рівняння:
Х1 = ( -в + √D ) / 2а = ( -14 + √676 ) / 2 = 6
Х2 = ( -в - √D ) / 2а = ( -14 - √676 ) / 2 = -20
Другий корінь ( Х2 = -20 ) - відкидаємо, оскільки швидкість автомобіля не може бути негативною.
Маємо швидкість легкового автомобіля дорівнює 6 км/год.
Підставимо Х = 6 до рівняння ( 3 ):
У = 10 - 6 = 4
Маємо швидкість вантажного автомобіля дорівнює 4 км/год.
Перевірка:
1 умова.
Легковий і вантажний автомобілі зустрілися на середині шляху ( проїхали по 3 км. ), легковий автомобіль вийшов на 1/4 часу пізніше вантажівки.
На подолання відстані у 3 км. легковий автомобіль використав:
3 / 6 = 0,5 часу.
На подолання відстані у 3 км. вантажний автомобіль використав:
3 / 4 = 0,75 часу.
Час, що використав вантажний автомобіль на 0,75 - 0,5 = 0,25 = 1/4 часу більший за час, що використав легковий автомобіль.
Вірно.
2 умова.
Якби вони виїхали одночасно, то зустрілися б через 6/10 часу.
За 6/10 часу легковий автомобіль подолання відстані у:
6 × 6/10 = 36/10 = 3,6 км.
За 6/10 часу вантажний автомобіль подолання відстані у:
4 × 6/10 = 24/10 = 2,4 км.
Разом вони подолали:
3,6 = 2,4 = 6 км.
Вірно.