Предмет: Геометрия,
автор: maiia111
Дуже потрібне розв'язання цієї задачі, дякую)
Приложения:
Ответы
Автор ответа:
2
Ответ:
Отрезок КВ₂ равен 4,5 см.
Объяснение:
Через точку К проведены прямые A₁A₂ и B₁B₂, пересекающие параллельные плоскости α и β в точках A₁, A₂, B₁ и B₂ (рис. 3). Найдите КВ₂, если А₁В₁ = 18 см, B₁B₂ = 13,5 см, a KB₁ =B₂A₂.
Дано: α || β;
A₁A₂ ∩ B₁B₂ = K
А₁В₁ = 18 см, B₁B₂ = 13,5 см,
KB₁ = B₂A₂.
Найти: КВ₂
Решение:
- Через две пересекающиеся прямые может проходить только одна плоскость.
⇒ A₁A₂ и B₁B₂ лежат в одной плоскости.
- Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
⇒ А₁В₁ || A₂B₂
Рассмотрим ΔКА₁В₁ и ΔВ₂КА₂
∠1 = ∠2 (накрест лежащие при А₁В₁ || A₂B₂ и секущей В₁B₂)
∠3 = ∠4 (вертикальные)
⇒ ΔКА₁В₁ ~ ΔВ₂КА₂
Запишем отношения сходственных сторон:
Пусть KB₁ = B₂A₂= х см, тогда КВ₂ = (13,5 - х) см
х₂ - не подходит по условию задачи.
⇒ KB₁ = 9 см, КВ₂ = 13,5 - 9 = 4,5 (см)
Отрезок КВ₂ равен 4,5 см.
Приложения:
maiia111:
Очень хорошо, спасибо
Похожие вопросы
Предмет: Математика,
автор: umaratbek21
Предмет: Литература,
автор: csc775703
Предмет: Математика,
автор: nadamariuca6
Предмет: Музыка,
автор: zerekook
Предмет: Биология,
автор: Аноним