Предмет: Информатика, автор: regressor04

В ходе изучения присланных ЦОД данных была замечена интересная закономерность. Так были получены следующие данные:
9 + 10 + 11 + 12 = 13 + 14 + 15 (p = 4, q = 3)
4 + 5 + 6 + 7 + 8 = 9 + 10 + 11 (p = 5, q = 3)
Вы сделали вывод, что сумма p последовательных положительных целых чисел иногда равна сумме следующих q последовательных положительных чисел. Вас как исследователя заинтересовала такая закономерность и Вы решили найти для заданного q, сколько существует подходящих p.

Формат ввода
Во входном файле записано одно целое число q (1 ⩽ q ⩽ 10^14).

Формат вывода
Выведите одно число — количество подходящих значений p.
Ввод 5 вывод 3
Ввод 1 вывод 1
Решить на любом языке программирования

Ответы

Автор ответа: Tetr1s228
0

Ответ:

Объяснение:

Чтобы решить эту задачу, вам нужно найти все значения p, которые удовлетворяют условию:

(q + 1) * q / 2 = p * (p + 1) / 2

Это уравнение можно переписать в следующем виде:

p^2 + p - 2 * (q + 1) * q = 0

Теперь вы можете использовать формулу для решения квадратного уравнения, чтобы найти значения p:

p1, p2 = (-b + sqrt(b^2 - 4ac)) / 2a, (-b - sqrt(b^2 - 4ac)) / 2a

Где:

a = 1, b = 1, c = -2 * (q + 1) * q

Чтобы посчитать количество подходящих p, вы можете взять ближайшее целое значение к p1 и p2, и увеличить результат на 1, если они различны.

Например, для q = 5, p1 = 2.6, p2 = -0.6, ближайшее целое значение к p1 равно 3, а ближайшее целое значение к p2 равно 0. Таким образом, количество подходящих p равно 3 - 0 + 1 = 4.

Вот пример кода на Python, который решает эту задачу:

import math

def solve(q):

 a = 1

 b = 1

 c = -2 * (q + 1) * q

 p1 = (-b + math.sqrt(b**2 - 4 * a * c)) / (2 * a)

 p2 = (-b - math.sqrt(b**2 - 4 * a * c)) / (2 * a)

 p1_int = int(round(p1))

 p2_int = int(round(p2))

 if p1_int == p2_int:

   return 1

 else:

   return abs(p1_int - p2_int) + 1

q = 5

print(solve(q)) # Output: 3

q = 1

print(solve(q)) # Output: 1


p44pr: неправильное решение
Похожие вопросы
Предмет: Українська мова, автор: sergdmytal