Предмет: Геометрия,
автор: smorodina666
боковая поверхность правильной четырехугольной призмы имеет площадь 16 дм2.Диагональ основания равна 4 корня из 2.Найдите площадь сечения призмы,проходящего через диагонали двух смежных боковых граней,имеющих общую вершину
Ответы
Автор ответа:
0
в основании правильной четырехугольной призмы лежит квадрат. и она прямая.
значит все боковые грани равны, отсюда S/4 = s1 (s1 - площадь одной грани)
16/4 = 4 = s1
зная диагональ основания найдем ее сторону так как a√2 = d
4√2 = a√2, а = 4
s1 грани равно = а*b = (а сторона основания, b высота призмы)
4 = 4*b, b = 1
найдем диагональ грани по теореме пифагора: х" = 16+1, х = √17
на рисунке видно сечение: АВ1С
из этого треугольника найдем ее высоту L: L" = 17-8 =9
L = √9 = 3
s = h*a*1/2 = 3*4√2*1/2 = 6√2
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: KindDemon
Предмет: Геометрия,
автор: Аноним
Предмет: Английский язык,
автор: ivahnukmihail49
Предмет: Обществознание,
автор: яфйц
Предмет: Математика,
автор: 11Школьница11