Предмет: Математика, автор: marmeladdochka

Менша діагональ прямокутної трапеції ділить її кут навпіл, а другу
діагональ поділяє у відношенні 5:2, рахуючи від вершини гострого кута.
Знайдіть периметр трапеції, якщо її менша бічна сторона дорівнює 8 см.

Ответы

Автор ответа: Wh1ter
2

Ответ:

P = 52 см

Пошаговое объяснение:

У цій задачі відомо, що менша сторона трапеції дорівнює 8 см. Назвемо більшу сторону "b" і нехай x буде довжиною сторони, яка не є основою трапеції.

Оскільки діагональ ділить дві основи у співвідношенні 5:2, можна встановити таку пропорцію:

(8 см) / (5) = (b см) / (2)

Перехресне множення отримуємо:

8 см * 2 = 5 * b см

Розв’язуючи b, знаходимо, що b = 16 см.

Отже, периметр трапеції дорівнює 8 см + 16 см + 2х см. Ми можемо знайти значення x за допомогою теореми Піфагора. Назвемо висоту трапеції h. Тоді ми маємо таке рівняння:

x^2 + h^2 = (b/2)^2

Підставляючи b = 16 см і розв’язуючи x, знаходимо, що x = 12 см.

Отже, периметр трапеції дорівнює 8 см + 16 см + 2 * 12 см = 52 см.

Похожие вопросы
Предмет: Геометрия, автор: reshala6226