Предмет: Геометрия,
автор: anastasiawaer
Коло задане рівнянням х^2+у^2=100.
Визначити його точки
Ответы
Автор ответа:
0
Ответ:
точка (3, 4)
Объяснение:
Коло з радіусом r=10 і центром на початку координат (0, 0) задається рівнянням:
x^2 + y^2 = r^2
Підставив r=10, отримаємо:
x^2 + y^2 = 100
Точки, що задовольняють цього рівняння, будуть точками кола. Наприклад, точка (3, 4) задовольняє рівняння x^2 + y^2 = 100, оскільки 3^2 + 4^2 = 9 + 16 = 25 = 100.
Інші точки кола можуть бути знайдені, переміщаючись по колу та записуючи координати точок, які задовольняють рівнянню x^2 + y^2 = 100. Наприклад, точки (-3, 4), (-3, -4), (3, - 4) також задовольняють цього рівняння.
anastasiawaer:
Завдання тестове із варіантів є (6;8), (9;-7), (-7;-2), (9;4)
Похожие вопросы
Предмет: Биология,
автор: pokolokouwu
Предмет: Українська мова,
автор: dasakravcenko15
Предмет: Алгебра,
автор: marwatohtar
Предмет: Физкультура и спорт,
автор: Зажечь444
Предмет: География,
автор: eheheehehhsy