Предмет: Алгебра, автор: okejlarisa

Знайти частинні похідні функції та повний диференціал функції: z = tg ln(x/y)

Ответы

Автор ответа: IerarhPrelat
1

Частинні похідні функції та повний диференціал функції z = tg ln(x/y) можуть бути знайдені за допомогою правил диференціювання. Для цього ми використовуємо три правила: правило диференціювання композицій, правило диференціювання тангенса і правило диференціювання логарифму. Наприклад, частинна похідна по змінній x рівна:

z'(x) = (tg ln(x/y))'(x) = (1/cos^2(ln(x/y))) * (1/y) * (1/x) = (1/y) * (1/x) * cot^2(ln(x/y))

Аналогічно, частинна похідна по змінній y рівна:

z'(y) = (tg ln(x/y))'(y) = (1/cos^2(ln(x/y))) * (-1/y^2) * (1/x) = (-1/y^2) * (1/x) * cot^2(ln(x/y))

Таким чином, частинні похідні функції рівні:

z'(x) = (1/y) * (1/x) * cot^2(ln(x/y))

z'(y) = (-1/y^2) * (1/x) * cot^2(ln(x/y))

Повний диференціал функції z = tg ln(x/y) може бути знайдений як добуток частинних похідних по x і y:

dz = z'(x) dx + z'(y) dy

За умови, що частинні похідні функції рівні:

z'(x) = (1/y) * (1/x) * cot^2(ln(x/y))

z'(y) = (-1/y^2) * (1/x) * cot^2(ln(x/y))

Тоді повний диференціал функції z = tg ln(x/y) дорівнює:

dz = [(1/y) * (1/x) * cot^2(ln(x/y))] dx + [(-1/y^2) * (1/x) * cot^2(ln(x/y))] dy

Таким чином, повний диференціал функції z = tg ln(x/y) дорівнює:

dz = [(1/y) * (1/x) * cot^2(ln(x/y))] dx + [(-1/y^2) * (1/x) * cot^2(ln(x/y))] dy

Похожие вопросы