Предмет: Математика,
автор: Аноним
Найти непрерывность функций
y=2x^2+2
Ответы
Автор ответа:
0
Пусть функция определена на множестве E
Пусть где .
Понятно, что для любого на области от (то есть: ) выполняется .
Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется
(Проще говоря:
). Следовательно - .
Что и требовалось доказать.
Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на !
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Пусть где .
Понятно, что для любого на области от (то есть: ) выполняется .
Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется
(Проще говоря:
). Следовательно - .
Что и требовалось доказать.
Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на !
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "...
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Похожие вопросы
Предмет: Английский язык,
автор: salomahinsergej
Предмет: Английский язык,
автор: Аноним
Предмет: Математика,
автор: azimkhan20102010
Предмет: Химия,
автор: mrekkilove
Предмет: Литература,
автор: 16Настя