Предмет: Алгебра, автор: Viscount

Решите парочку показательных неравенств.
Отдаю 25 баллов

Приложения:

Ответы

Автор ответа: reygen
1

2.

(0,1 )^{x+1} \geqslant 100 \\\\ (0,1)^{x+1} \geqslant (0,1)^{-2}

т.к  0 < 0,1  < 1 , знак меняется на противоположный

x + 1\leqslant  -2\\\\ x\leqslant  -3

3.

(\sqrt{3}) ^{4-x^2} \geqslant  1  \\\\ (\sqrt{3} )^{-x^2+ 4} \geqslant (\sqrt{3})^{0} \\\\   -x^2+4\geqslant 0 \\\\ x^2 - 4\leqslant 0  \\\\ (x-2)(x+2)\leqslant 0

\setlength{\unitlength}{23mm}\begin{picture}(1,1) \linethickness{0.2mm} \put(0.88,-0.3) {\sf - 2}   \put(1 ,0.1){ \LARGE  \text{~~~ ---} }    \put(.1 ,0.1){ \Large  \text{ +} } \put(2.1 ,0.1){ \Large  \text{ +} } \put(1,0){\circle*{0.05}}   \put(2,-0.3) {\sf 2}\put(2.05,0){\circle*{0.05}}  \put(1,0.3)  \ \put(0,0){\vector (1,0){3}}  \end{picture}

x \in [ -2  ~ ; ~  2~]

Похожие вопросы
Предмет: Литература, автор: kusajynnazym