Предмет: Математика, автор: denysandrusiak

x^2+xy^3 = 192
x^3y+x^2y^2 = 96

Приложения:

Ответы

Автор ответа: himikomat
1

Ответ:

\begin{cases} {x}^{2}  {y}^{2}  + x {y}^{3} = 192  \\  {x}^{3} y +  {x}^{2}   {y}^{2} = 96 \end{cases}

\begin{cases}x {y}^{2} (x + y) = 192 \\  {x}^{2} y(x + y) = 96 \end{cases}

 \frac{x {y}^{2} (x + y)}{ {x}^{2}y(x + y) }  =  \frac{192}{96}

сокращаем на общий делитель x+y;y;x и 96:

 \frac{y}{x}  = 2

x \times  \frac{y}{x}  = 2x

сокращаем на общий делитель x:

y = 2x

 {x}^{3}  \times 2x +  {x}^{2}  \times  {(2x)}^{2}  = 96

 {x}^{3}  \times 2x +  {x}^{2}  \times 4 {x}^{2}  = 96

(1 + 2) \times 2 {x}^{2}  \times x \times x = 96

3 \times 2 {x}^{2}  \times x \times x = 96

6 {x}^{4}  = 96

делим обе стороны уравнения на 6:

 {x}^{4}  = 16

x = ±2

x =  - 2 \\ x = 2

 {( - 2)}^{2}  \times  {y}^{2}  +  {( - 2)y}^{3}  = 192 \\  {2}^{2}  {y}^{2}  + 2 {y}^{3} =  192

 {( - 2)}^{2}  \times  {y}^{2}  + ( - 2) {y}^{3}  = 192 \\  {2}^{2}  {y}^{2}  - 2 {y}^{3}  = 192 \\ 4 {y}^{2}  - 2 {y}^{3}  = 192 \\  \div 2 \\ 2 {y}^{2}  -  {y}^{3}  = 96 \\ 2 {y}^{2}  -  {y}^{3}  - 96 = 0 \\  -  {y}^{3}  + 2 {y}^{2}  - 96 = 0 \\  -  {y}^{3}  - 4 {y}^{2}  + 6 {y}^{2}  - 96 = 0 \\  -  {y}^{2} (y + 4) + 6( {y}^{2}  - 16) = 0 \\  -  {y}^{2} (y + 4) + 6(y - 4)(y + 4) = 0 \\  - (y + 4)( {y}^{2}  - 6(y - 4)) = 0 \\  - (y + 4)( {y}^{2}  - 6y + 24) = 0 \\ (y + 4)( {y}^{2}  - 6y + 24) = 0 \\ y + 4 = 0 \\  {y}^{2}  - 6y + 24 = 0 \\ y =  - 4 \\ y∉ℝ \\ y =  - 4

 {2}^{2}  {y}^{2}  + 2 {y}^{3}  = 192 \\ 4 {y}^{2}  + 2 {y}^{3}  = 192 \\  \div 2 \\ 2 {y}^{2}  +  {y}^{3}  = 96 \\ 2 {y}^{2}  +  {y}^{3}  - 96 = 0 \\  {y}^{3}  + 2 {y}^{2}  - 96 = 0 \\  {y}^{3}  - 4 {y}^{2}  + 6 {y}^{2}  - 96 = 0 \\  {y}^{2} (y - 4) + 6( {y}^{2}  - 16) = 0 \\  {y}^{2} (y - 4) + 6(y - 4)(y + 4) = 0 \\ (y - 4)( {y}^{2}  + 6(y + 4)) = 0 \\ (y - 4)( {y}^{2}  + 6y + 24) = 0 \\ y - 4 = 0 \\  {y}^{2}  + 6y + 24 = 0 \\ y = 4 \\ y∉ℝ \\ y = 4

y =  - 4 \\ y = 4

(x_{1}, y_{1})=(-2, -4) \\ (x_{2}, y_{2})=(2,4)

\begin{cases}  {( - 2)}^{2} \times  {( - 4)}^{2}   + ( - 2) \times  {( - 4)}^{3} = 192 \\  {( - 2)}^{3}  \times ( - 4) +  {( - 2)}^{2}  \times  {( - 4)}^{2}  = 96 \end{cases}  \\ \begin{cases}  {2}^{2} \times  {4}^{2}   + 2 \times  {4}^{3} = 192 \\  {2}^{3}   \times 4 +  {2}^{2} \times  {4}^{2}  = 96 \end{cases}

\begin{cases} 192 = 192 \\ 96 = 96\end{cases}  \\ \begin{cases} 192 = 192 \\ 96 = 96\end{cases}

(x_{1}, y_{1})=(-2, -4) \\ (x_{2}, y_{2})=(2, 4)

Похожие вопросы
Предмет: Математика, автор: Evelunawwl