Предмет: Алгебра, автор: siaanov

Решите пожалуйста
они типо вместе вроде
1) 4x-y+z=15 - методом Крамера
x+y+z=8 - методом Крамера
2x-y+3z=17 - методом Крамера

2)
они типо вместе вроде
-2x-3y+z=5 методом Гаусса
x+y+z=3 методом Гаусса
-x-2y+z=2 методом Гаусса

Ответы

Автор ответа: NNNLLL54
1

Ответ:

1)  Метод Крамера решения систем уравнений .

\left\{\begin{array}{l}4x-y+z=15\\x+y+z=8\\2x-y+3z=17\end{array}\right  

Составим определитель системы и раскроем его по 1 строке .

\Delta =\left|\begin{array}{ccc}4&-1&1\\1&1&1\\2&-1&3\end{array}\right|=4\, (3+1)+(3-2)+(-1-2)=14\\\\\\\Delta _{x}=\left|\begin{array}{ccc}15&-1&1\\8&1&1\\17&-1&3\end{array}\right|=15\, (3+1)+(24-17)+(-8-17)=42

\Delta _{y}=\left|\begin{array}{ccc}4&15&1\\1&8&1\\2&17&3\end{array}\right|=4\, (24-17)-15\, (3-2)+(17-16)=14\\\\\\\Delta _{z}=\left|\begin{array}{ccc}4&-1&15\\1&1&8\\2&-1&17\end{array}\right|=4\, (17+8)+(17-16)+15\, (-1-2)=56    

Найдём значения переменных .

\bf x=\dfrac{\Delta _{x}}{\Delta }=\dfrac{42}{14}=3\ ,\ \ \ y=\dfrac{\Delta _{y}}{\Delta }=\dfrac{14}{14}=1\ ,\ \ \ z=\dfrac{\Delta _{z}}{\Delta }=\dfrac{56}{14}=4  .  

2)  Метод Гаусса решения систем уравнений .

 \left\{\begin{array}{l}-2x-3y+z=5\\x+y+z=3\\-x-2y+z=2\end{array}\right  

Составим расширенную матрицу системы .

 \left(\begin{array}{cccc}-2&-3&1&\ |\ 5\\1&1&1&\ |\ 3\\-1&-2&1&\ |\ 2\end{array}\right)\sim \ \left(\begin{array}{cccc}1&1&1&\ |\ 3\\-2&-3&1&\ |\ 5\\-1&-2&1&\ |\ 2\end{array}\right)\sim 1str\cdot 2+2str\ ;\ 1str+3str\\\\\\\left(\begin{array}{cccc}1&1&1&\ |\ 3\\0&-1&3&\ |\ 11\\0&-1&2&\ |\ 5\end{array}\right)\sim \ \ 2str-3str\ \sim \left(\begin{array}{cccc}1&1&1&\ |\ \ 3\\0&-1&3&\ |\, 11\\0&0&1&\ |\ \ 6\end{array}\right)

Обратный ход.

\left\{\begin{array}{r}x+y+z=3\\-y+3z=11\\z=6\end{array}\right\ \ \ \Rightarrow \\\\\\z=6\\\\-y+3z=11\ \ \Rightarrow \ \ -y+3\cdot 6=11\ \ ,\ \ y=18-11\ \ ,\ \ y=7\\\\x+y+z=3\ \ \Rightarrow \ \ x+7+6=3\ \ ,\ \ \ x=3-6-7\ \ ,\ \ x=-10  

Ответ:  \bf x=-10\ ,\ \ y=7\ ,\ \ z=6\ .  

Похожие вопросы
Предмет: Химия, автор: Arinachat