Предмет: Математика, автор: koliasdf34

100 балов
задание во вложении

Приложения:

Ответы

Автор ответа: NNNLLL54
1

Ответ:

1) Найти производную функции . Применяем правила дифференцирования и пользуемся таблицей производных, если её ещё не запомнили .

\bf a)\ \ y(x)=arccos(sinx)+x+e^{^{x^2+x}}\\\\y'(x)=-\dfrac{1}{\sqrt{1-sin^2x}}\cdot cosx+1+(2x+1)\cdot e^{^{x^2+x}}=\\\\\\=-\dfrac{cosx}{\sqrt{cos^2x}}+1+(2x+1)\cdot e^{^{2x+1}}=-1+1+(2x+1)\cdot e^{^{2x+1}}=(2x+1)\cdot e^{^{2x+1}}

\bf b)\ \ x^3=cosx+cosy\\\\3x^2=-sinx-siny\cdot y'\ \ ,\ \ y'=-\dfrac{sinx+3x^2}{siny}  

\bf 2)\ \ y=-\dfrac{1}{3}\, x^3+\dfrac{1}{2}\, x^2+2x-5\\\\y'=-x^2+x+2=0\ \ ,\ \ x^2-x-2=0\ \ ,\ \ x_1=-1\ ,\ x_2=2\ \ (teorema\ Vieta)\\\\y'(x)=-(x+1)(x-2)

Знаки у'(x):   \bf ---(-1)+++(2)---   .

Функция возрастает при  \bf x\in [-1\ ;\ 2\ ]  .

Функция убывает при   \bf x\in (-\infty ;-1\ ]\ ,\ \ x\in [\ 2\ ;+\infty \, )  

Экстремумы функции:

- точка минимума    \bf x_{min}=-1\ ,\ \ y_{min}=y(-1)=-\dfrac{37}{6}\ ,\ \ M_1(-1\ ;\, -\frac{37}{6}\ ) ,

- точка максимума   \bf x_{max}=2\ ,\ \ y_{max}=y(2)=\dfrac{1}{3}\ \ ,\ \ M_2(2\ ;\ \frac{1}{3}\ )  .

\bf 4)\ \ y=x-8\sqrt{x}-2\ ,\ \ x\in [\ 9\ ;\ 25\ ]\\\\y'=1-\dfrac{8}{2\sqrt{x}}=1-\dfrac{4}{\sqrt{x} }=0\ \ ,\ \ \dfrac{4}{\sqrt{x}}=1\ \ ,\ \ 4=\sqrt{x}\ \ ,\ \ x=16\in [\ 9\ ;\ 25\ ]\\\\y(9)=9-8\cdot 3-2=-17\\\\y(16)=16-8\cdot 4-2=-18\\\\y(25)=25-8\cdot 5-2=-17  

Наибольшее значение функции на заданном промежутке  равно\bf y_{naibol.}=-17  .

Наименьшее значение функции на заданном промежутке  равно\bf y_{naimen.}=-18 .


koliasdf34: спасибо
koliasdf34: если есть возможность не могли ли вы помочь еще с одним вариантом,я его задал тоже за 100 балов
Похожие вопросы
Предмет: Українська мова, автор: gevrikgevrik007
Задание от учителя


Добрий день! Контрольна письмова робота з мови. В зум не заходимо. Треба охайно й уважно переписати текст. На місці однієї риски поставити кому, на місці двох – двокрапку. Фото мені у пп.



Текст

Скляні пляжі

Чи доводилося вам коли-небудь чути про скляні пляжі, Ні? А насправді у світі є декілька таких унікальних об'єктів. Ось розповідь про найвідоміший з них. Поблизу містечка Форт-Брег у штаті Каліфорнія на узбережжі Тихого океану розташований пляж / усіяний різнокольоровими скляними уламками. Видовище це дивовижне. Сонячної днини пляж наче переливається всіма кольорами веселки. Звідки ж узялося це скло? Де звичні для таких місць пісок та галька? Усьому виною людина.

Місцеві жителі тривалий час використовували це місце як звалище. Що тільки сюди не викидали // і побутові відходи / і стару техніку / і різну тару / і навіть автомобілі. 1967 року влада вирішила покінчити зі звалищем // пляж закрили й декілька разів очищали від нагромадженого за довгі роки сміття. Щоправда / під ногами лишилося багато неприбраного битого скла / про яке / однак / подбала матінка-природа. Морські хвилі з часом відполірували гострі скляні уламки / перетворивши їх на різнокольорову гальку. Скельця стали настільки гладкими / що ходити по них босоніж стало цілком безпечно. 3 80-х років це місце набуло популярності серед туристів / які почали сюди приїздити / аби побачити це чудо.