Предмет: Математика,
автор: lnazik51
100 балів!!!!! Допоможіть, будь ласка!!
Кожне натуральне число пофарбували один з двох кольорів: синій або жовтий. Чи вірно що знайдеться два різних числа одного кольору, середнє арифметичне яких - натуральне число того ж кольору?
Ответы
Автор ответа:
2
Ответ:
Так..................
Автор ответа:
1
Відповідь:
Вірно
Покрокове пояснення:
Припустимо, що всі парні числа, більші або рівні 2n, де n - будь-то натуральне число, пофарбовані в один і той самий колір. Оскільки будь-яке парне число є середнім арифметичним двох сусідніх з ним парних чисел, то всі парні числа починаючи з 2n +2 - середнє арифметичне чисел того ж кольору. Нехай тепер є скільки завгодно великі парні числа кожного кольору. Тоді знайдеться синє число 2m, таке що 2m +2 - жовте, і жовте число 2n> 2m +2 таке, що число 2n +2 - синє. Середнє арифметичне чисел 2m і 2n+ 2 дорівнює m + n +1 і дорівнює середньому арифметичному чисел 2m +2 і 2n. Оскільки перша пара чисел - синя, а друга пара - жовта, то число m+n+1 збігається за кольором з однією з них.
lnazik51:
щиро вдячний
Похожие вопросы
Предмет: Химия,
автор: Refrigerator999
Предмет: Литература,
автор: gghgxd
Предмет: Биология,
автор: edhdu730
Предмет: Математика,
автор: Аноним
Предмет: Другие предметы,
автор: milkakpop13