Предмет: Геометрия, автор: svetikch1997

Дан правильный треугольник со стороной а=2, точка Р находится на расстоянии 5 от вершин треугольника. Найти расстояние от точки Р до плоскости треугольника.

Ответы

Автор ответа: fanat2
0
решение приведено во вложении
Приложения:
Автор ответа: meripoppins60
0
Высота равностороннего треугольника со стороной а = 2, разбивает его на два равных прямоугольных треугольника с гипотенузой а = 2 и острыми углами 30° и 60°. 
По определению синус острого угла прямоугольного треугольника = отношению ПРОТИВОЛЕЖАЩЕГО катета (h) к гипотенузе а = 2

sinα =  frac{h}{a}

h = a * sinα = 2 *  frac{ sqrt{3} }{2} = √3 - высота равностороннего треугольника

Кратчайшее расстояние от точки Р до плоскости треугольника - перпендикуляр к плоскости треугольника, основание которого делит высоту треугольника в отношении 2 : 3, считая от вершины h : 3 * 2 = 2h : 3 = 2√3/3

В прямоугольном треугольнике с гипотенузой с = 5 и катетом b = 2√3/3, по т. Пифагора

5² = (2√3/3)² + х²

х² = 23 frac{2}{3}

х =  sqrt{23 frac{2}{3} }



Приложения:
Похожие вопросы