Предмет: Геометрия,
автор: alanfedotov046
помогите пж что сможете
Приложения:
Ответы
Автор ответа:
1
Ответ:
номер 8
Объяснение:
Дано ∆СРМ
C( 1; 1)
P (4; 1)
M(4; 5)
Cos@ =?
Используя свойство, что в ∆ против меньшей стороны лежит меньший угол, найдем длины сторон данного ∆:, как корень квадратный из суммы квадратов разностей соответственных координат:
СР = √[(4-1)^2+(1-1)^2]=√[3^2+0] =3
РМ = √[(4-4)^2+(5-1)^2=√[0+4^2]=4
СМ = √[(4-1)^2+(5-1)^2=√[3^2+4^2]=5
СР < РМ < СМ => <М < <С < <Р
Используя теорему косинусов, применительно к данному , имеем
СР^2=РМ^2+СМ^2 - 2РМ*СМ*Cos<M
Cos<M =(PM^2+CM^2 -CP^2)/(2PM*CM)
Cos<M = (4^2+5^2-3^2)/(2*4*5)
Cos<M = 32/40 = 4/5= 0,8
***
'[' это не модуль!
alanfedotov046:
спасибо большое
Похожие вопросы
Предмет: Химия,
автор: budahinaviktoria
Предмет: Химия,
автор: mmmpoiuy
Предмет: Химия,
автор: wexiness
Предмет: Биология,
автор: teselyi
Предмет: Қазақ тiлi,
автор: 013471250