Предмет: Алгебра, автор: julia15asd

ДОПОМОЖІТЬ ДАЮ 30 БАЛІВ!​

Приложения:

Ответы

Автор ответа: NNNLLL54
0

Ответ:

Знаменатель дроби не может равняться 0 , а подкоренное выражение должно быть неотрицательным .

1)\ \ f(x)=\dfrac{1}{x}+\dfrac{1}{x^2-x-2}\ \ \Rightarrow \ \ \  f(x)=\dfrac{1}{x}+\dfrac{1}{(x+1)(x-2)}\\\\\\\left\{\begin{array}{l}x\ne 0\\(x+1)(x-2)\ne 0\end{array}\right\ \ \left\{\begin{array}{l}x\ne 0\\x\ne -1\ ,\ x\ne 2\end{array}\right\\\\\\\boldsymbol{D(y)=(-\infty ;-1\ )\cup (-1\, ;\ 0\ )\cup (\ 0\ ;\ 2\ )\cup (\ 2\ ;+\infty \, )}  

2)\ \ f(x)=\dfrac{\sqrt{x+1}}{x^2+2x-8}\ \ \Rightarrow \ \ \  f(x)=\dfrac{\sqrt{x+1}}{(x+4)(x-2)}\\\\\\\left\{\begin{array}{l}x+1\geq 0\\(x+4)(x-2)\ne 0\end{array}\right\ \ \left\{\begin{array}{l}x\geq -1\\x\ne -4\ ,\ x\ne 2\end{array}\right\\\\\\\boldsymbol{D(y)=[-1\, ;\ 2\ )\cup (\ 2\ ;+\infty \, )}    

3)\ \ f(x)=\dfrac{1}{2-x}+\sqrt{x}\\\\\\\left\{\begin{array}{l}2-x\ne 0\\x\geq 0\end{array}\right\ \ \left\{\begin{array}{l}x\ne 2\\x\geq 0\end{array}\right\\\\\\\boldsymbol{D(y)=[\ 0\, ;\ 2\ )\cup (\ 2\ ;+\infty \, )}    

Похожие вопросы