Предмет: Информатика, автор: rhythmm

Натуральное число n делится без остатка на натуральное число m. Помогите решить пожалуйста.

Ответы

Автор ответа: chychyndra777
0

Ответ:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

ДЕЛ(90, A) ∧ (¬ДЕЛ(x, А) → (ДЕЛ(x, 15) → ¬ДЕЛ(x, 20)))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Спрятать решение

Решение.

Рассмотрим такие x, при которых скобка (ДЕЛ(x, 15) → ¬ДЕЛ(x, 20)) будет ложной. Это x, которые одновременно делятся без остатка на 15 и на 20. Наименьшее общее кратное этих чисел равно 60.

Следовательно, для х = 60 выражение ¬ДЕЛ(x, А) должно быть ложным, то есть число 60 должно делиться на А, также на A должно делиться число 90. Наибольшим таким А является число 30. Это и будет ответ.

Ответ: 30.

Приведём другое решение на языке Python.

for a in range(100, 0, -1):

   k = 0

   for x in range(1, 1000):

       if (90 % a == 0) and ((x % a != 0) <= ((x % 15 == 0) <= (x % 20 != 0))):

           k += 1

   if k == 999:

       print(a)

       break

Объяснение:

Похожие вопросы