Предмет: Алгебра, автор: padost2008

5 задание 1 и второй пример даю 51 балов помогите пожалуйста

Приложения:

Ответы

Автор ответа: NNNLLL54
0

Ответ:

Применяем свойства степеней :   \bf (a^{n})^{k}=a^{n\cdot k}\ \ ,\ \ \dfrac{1}{a^{n}}=a^{-n}\ \ ,  

         \bf (a\cdot b)^{n}=a^{n}\cdot b^{n}\ \ ,\ \ \dfrac{a^{n}}{a^{k}}=a^{n-k}\ \ ,\ \ a^0=1

\displaystyle 5.1)\ \ \frac{(0,5)^3\cdot 8^7\cdot 12^2}{6^3\cdot 2^{15}}=\frac{2^{-3}\cdot (2^3)^7\cdot (2^2\cdot 3)^2}{(2\cdot 3)^3\cdot 2^{15}}=\frac{2^{-3}\cdot 2^{21}\cdot 2^4\cdot 3^2}{2^3\cdot 3^3\cdot 2^{15}}=\\\\\\=\frac{2^{22}\cdot 3^2}{2^{18}\cdot 3^3} =\frac{2^4}{3}=\frac{16}{3}

\displaystyle 5.2)\ \ \frac{(\frac{1}{4})^3\cdot 9\cdot 20^3}{18^4\cdot 5^2}=\frac{(2^{-2})^3\cdot 3^2\cdot (2^2\cdot 5)^3}{(3^2\cdot 2)^4\cdot 5^2}=\frac{2^{-6}\cdot 3^2\cdot 2^6\cdot 5^3}{3^8\cdot 2^4\cdot 5^2}=\\\\\\=\frac{2^0\cdot 3^2\cdot 5^3}{2^4\cdot 3^8\cdot 5^2}=\frac{1\cdot 5}{2^4\cdot 3^6}=\frac{5}{16\cdot 729}=\frac{5}{11664}

Похожие вопросы