Предмет: Алгебра, автор: hoholo4ek

из пункта А в пункт В одновременно выехали два автомобиля. Первый проехал
с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью
40 км/ч, а вторую половину пути проехал со скоростью, большей скорости первого на 15 км/ч,
в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость
первого автомобиля. Ответ дайте в км/ч.


ВикаБач: S/v=0.5S/40+0.5S/(v+15); 2/v=1/40+1/(v+15);
hoholo4ek: можно решение?
ВикаБач: Ну... это как бы простое квадратное уравнение...
hoholo4ek: можно ответ, ничего не понимаю

Ответы

Автор ответа: volna7
1

Відповідь:

Скорость первого автомобиля равна 49,33 км/ч.

Пояснення:

Время ( Т ), которое автомобиль, движущийся на скорости ( V ) потратил на преодоление пути ( А ) определяется по формуле : Т = А / V.

Обозначим через Х - скорость первого автомобиля, а через А - расстояние между пунктом А и пунктом В. Тогда первый автомобиль потратил на дорогу из пункта А в пункт В: ( А / Х ) часов. Второй автомобиль проехал первую половину пути со скоростью 40 км/ч и потратил на это: ( А / ( 2 × 40 ) ) часов. Вторую половину пути второй автомобиль проехал со скоростью, большей скорости первого на 15 км/ч, то есть ( Х + 15 ) км/ч и потратил на это: ( А / ( 2 × ( Х + 15 ) ) ) часов. По условию задачи оба автомобиля одновременно прибыли в пункт В. Следовательно:

А / Х = А / ( 2 × 40 ) + А / ( 2 × ( Х + 15 ) )

А / Х = А / 80 + А / ( 2Х + 30 )

Разделим обе части уравнения на А, получаем:

1 / Х = 1 / 80 + 1 / ( 2Х + 30 )

Приведем уравнение к общему знаменателю 80 × ( 2Х + 30 ), получаем:

1 / Х = ( 2Х + 30 + 80 ) / ( 80 × ( 2Х + 30 ) )

80 × ( 2Х + 30 ) = Х × ( 2Х + 110 )

160Х + 2400 = 2Х^2 + 110Х

2Х^2 + 110Х - 160Х - 2400 = 0

2Х^2 - 50Х - 2400 = 0

Разделим уравнение на 2, получаем:

Х^2 - 25Х - 1200 = 0

Найдем дискриминант:

D = 25^2 - 4 × ( -1200 ) = 5 425

Найдем корни квадратного уравнения:

Х1 = ( 25 - sqrt ( 5 425 ) ) / 2 = ( 25 - 73,65 ) / 2 = 49,33

Х2 = ( 25 + sqrt ( 5 425 ) ) / 2 = ( 25 + 73,65 ) / 2 = -24,33

Скорость автомобиля не может быть отрицательной величиной, поэтому второй корень отбрасываем.

Скорость первого автомобиля равна 49,33 км/ч.

Проверка:

Зададимся расстоянием между пунктом А и пунктом В 493,3 км.

Тогда первый автомобиль потратил на дорогу из пункта А в пункт В: 493,3 / 49,33 = 10 часов.

Второй автомобиль проехал первую половину пути со скоростью 40 км/ч и потратил на это: 493,3 / ( 2 × 40 ) = 6,17 часа.

Вторую половину пути второй автомобиль проехал со скоростью, большей скорости первого на 15 км/ч, то есть: 49,33 + 15 = 64,33 км/ч и потратил на это: 493,3 / ( 2 × 64,33 ) = 3,83 часа.

Всего на дорогу из пункта А в пункт В второй автомобиль потратил: 6,17 + 3,83 = 10 часов.

Оба автомобиля одновременно прибыли в пункт В.

Всё правильно.


kirarossmed: У меня так же получалось, но смущало , что из дискриминанта не извлекается корень целым числом, значит ответ округленный какой- то получается
volna7: Возможно в исходной задаче были какие-то другие цифры. Меня тоже смутило, что ответ получился не целым числом, но я сделал проверку и все совпало.
Похожие вопросы