Предмет: Математика, автор: gamesmonster

Найти производные y' =dy/dx заданных функций

Приложения:

Ответы

Автор ответа: GoldenVoice
1

Пошаговое объяснение:

б) \[{\mathop{\rm tg}\nolimits} y = xy + \ln xy;\]

Подразумеваем, что y = y(x), дифференцируем обе части по x.

Так, {\mathop{\rm tg}\nolimits} y(x) — сложная функция, поэтому ее производная это сперва производная от тангенса, умноженная на производную от его аргумента (y(x)): ({\mathop{\rm tg}\nolimits} y(x))' = \frac{1}{{{{\cos }^2}y}} \cdot y'.

Находим производную xy как производную произведения: (xy(x))' = (x)' \cdot y(x) + x \cdot y'(x) = y + xy'.

Производная логарифма — опять сложная функция: (\ln xy)' = \frac{1}{{xy}} \cdot (xy)' = \frac{{y + xy'}}{{xy}} = \frac{1}{x} + \frac{{y'}}{y}.

Вместе получаем: \frac{{y'}}{{{{\cos }^2}y}} = y + xy' + \frac{1}{x} + \frac{{y'}}{y}.

Выражаем y' из последнего равенства. Можно преобразовать ответ, избавившись от «двухэтажных» дробей: y' = \frac{{y(xy + 1){{\cos }^2}y}}{{x(y - xy{{\cos }^2}y - {{\cos }^2}y)}}.

в) y = {(\sin \sqrt x )^{\frac{1}{{{x^2}}}}};

Прологарифмируем по натуральному основанию обе части данного равенства: \ln y = \frac{1}{{{x^2}}}\ln (\sin \sqrt x ). Теперь найдем производную от обеих частей аналогично решению п. б).

\frac{{y'}}{y} =  - \frac{2}{{{x^3}}}\ln (\sin \sqrt x ) + \frac{1}{{{x^2}}} \cdot \frac{1}{{\sin \sqrt x }} \cdot \cos \sqrt x  \cdot \frac{1}{{2\sqrt x }};\\

\frac{{y'}}{y} = \frac{{\sqrt x {\mathop{\rm ctg}\nolimits} \sqrt x  - 4\ln (\sin \sqrt x )}}{{2{x^3}}};\\

y' = y \cdot \frac{{\sqrt x {\mathop{\rm ctg}\nolimits} \sqrt x  - 4\ln (\sin \sqrt x )}}{{2{x^3}}};\\

y' = \frac{{{{(\sin \sqrt x )}^{\frac{1}{{{x^2}}}}}}}{{2{x^3}}} \cdot (\sqrt x {\mathop{\rm ctg}\nolimits} \sqrt x  - 4\ln (\sin \sqrt x )).\\

Похожие вопросы
Предмет: Русский язык, автор: Holly24
Предмет: Русский язык, автор: grit2004
Предмет: Русский язык, автор: анина3