Решите тригонометрические уравнения, помогите срочно, с решением через дискриминант
Ответы
Ответ:
1) 10sin^2 x + 11sin x - 8 = 0
Замена sinx = a
10a^2 + 11a - 8 = 0
D = b^2 - 4ac = 11^2 - 4 × 10 × (-8) = 121 + 320 = 441 > 0 , 2 корня
a1 = ((-11) - √441) / 2 × 10 = ((-11)-21) / 20 = -32 / 20 = -8/5 = -1 3/5
a2 = ((-11) + 21) / 20 = 10/20 = 1/2
sin x = -1 3/5
sin x = a , a > 0
Пустое множество.
sin x = 1/2
x = (-1)^k × arcsin1/2 + πk , k € Z
x = (-1)^k × π/6 + πk , k € Z
2) 4sin^2 x - 11cosx - 11 = 0
4(1-cos^2 x) - 11cosx - 11 = 0
4 - 4cos^2 x - 11cosx - 11 = 0
-4cos^2 x - 11cosx - 7 = 0
Замена cos x = a
-4a^2 - 11a - 7 = 0
D = (-11^2) - 4 × (-4) × (-7) = 121 + 16 × (-7) = 121 - 112 = 9 > 0 , 2 корня
a1 = (11-3) / -8 = 8/-8 = -1
a2 = (11+3) / -8 = 15/-8 = -1 7/8
cos x = -1
x = π + 2πk , k € Z
cos x = -1 7/8
cos x = +-arccos(-1 7/8) + 2πk , k € Z
cos x = +- (π - arccos(1 7/8)) + 2πk , k € Z
3) 4sin^2 x + 9sin x cos x + 2cos^2 x = 0
Делим всё на cos^2 x
4tg^2 x + 9tg x + 2 = 0
Замена tg x = a
4a^2 + 9a + 2 = 0
D = 9^2 - 4 × 4 × 2 = 81 - 32 = 49
a1 = ((-9) - 7) / 8 = -16 / 8 = -2
a2 = ((-9) + 7) / 8 = -2/8 = -1/4
tg x = -2
x = arctg(-2) + πk , k € Z
x = -arctg(2) + πk , k € Z
tg x = -1/4
x = -arctg(1/4) + πk , k € Z
4) 3tg x - 8ctg x + 10 = 0
3tg x - 8/tg x + 10 = 0
Домножаем всё на tg x
3tg^2 x - 8 + 10tg x = 0
Замена tg x = a
3a^2 - 8 + 10a = 0
D = 10^2 - 4 × 3 × (-8) = 196
a1 = ((-10) - 14) / 6 = -24/6 = -4
a2 = ((-10) + 14) / 6 = 4/6 = 2/3
tg x = -4
x = -arctg(4) + πk , k € Z
tg x = 2/3
x = arctg(2/3) + πk , k € Z
5) 3sin 2x + 8sin^2 x = 7
6sinx × cosx + 8sin^2 x - 7(sin^2 x + cos^2x ) = 0
6sinxcosx + 8sin^2 x - 7sin^2 x - 7cos^2 x = 0
Делим всё на cos^2 x
6tg x + 8tg^2 x - 7tg^2 x - 7 = 0
6tg x + tg^2 x - 7 = 0
Замена tg x = a
6a + a^2 - 7 = 0
D = 6^2 - 4 × 1 × (-7) = 36 + 28 = 64
a1 = ((-6) - 8) / 2 = -14/2 = -7
a2 = ((-6) + 8) / 2 = 2/2 = 1
tg x = -7
x = -arctg(7) + πk , k € Z
tg x = 1
x = π/4 + πk , k € Z
6) 10sin^2 x + 11sin 2x + 6cos 2x = -6
10sin^2 x + 22sinxcosx + (12cos^2 x - 1) + 6(sin^2 x + cos^2 x) = 0
10sin^2 x + 22sinxcosx + (12cos^2 x - 1) + 6sin^2 x + 6cos^2 x = 0
Делим всё на cos^2 x
10tg^2 x + 22tg x + 11 + 6tg^2 x + 6 = 0
16tg^2 x + 22tg x + 17 = 0
D = отрицательный , корней нет