Предмет: Алгебра, автор: yanabarret7

1)інтеграл (5x^3-6x^2-4/x+1)dx 2)інтеграл x*dx/ корінь квадратний x^2+1
3)інтеграл xdx/sin^2*4x^2

Ответы

Автор ответа: Alnadya
2

Решение.

1.  Выделим целую часть рациональной дроби .

\displaystyle \bf \int \frac{5x^3-6x^2-4}{x+1}\, dx=\int \Big(5x^2-11x+11-\frac{15}{x+1}\Big)\, dx=\\\\\\=\frac{5}{3}\, x^3-\frac{11}{2}\, x^2+11x-15\, ln|x+1|+C  

2.  Подведение под знак дифференциала.

\displaystyle \bf \int \frac{x\, dx}{\sqrt{x^2+1}}=\frac{1}{2}\int \frac{2x\, dx}{\sqrt{x^2+1}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\frac{1}{2}\cdot 2\sqrt{x^2+1}+C=\\\\\\=\sqrt{x^2+1}+C    

Формула:    \displaystyle \bf \int \frac{dt}{\sqrt{t}}=2\sqrt{t}+C

3.  Подведение под знак дифференциала.

\displaystyle \bf \int \frac{x\, dx}{sin^2(4x^2)}=\frac{1}{8}\int \frac{8x\, dx}{sin^2(4x^2)}=\frac{1}{8}\int \frac{d(4x^2)}{sin^2(4x^2)}=-\frac{1}{8}\cdot ctg(4x^2)+C

Формула:     \displaystyle \bf \int \frac{dt}{sin^2t}=-ctgt+C

Похожие вопросы
Предмет: Русский язык, автор: помогите407
Предмет: Математика, автор: huseynova1