Предмет: Алгебра, автор: pipanmarta

Потрібна допомога для обчислення інтегралу

Приложения:

Ответы

Автор ответа: sangers1959
0

Объяснение:

\int\limits^4_1 {(\frac{5}{x}-\frac{1}{2\sqrt{x} }+x^2)  } \, dx = \int\limits^4_1 {\frac{5}{x} } \, dx-\int\limits^4_1 {\frac{1}{2\sqrt{x} } } \, dx +\int\limits^4_1 {x^2} \, dx=\\

= 5*\int\limits^4_1 {\frac{dx}{x} } -\frac{1}{2}*\int\limits^4_1 {x^{-\frac{1}{2}} } \, dx + \int\limits^4_1 {x^2} \, dx =5*ln|x|\ |_1^4  -\frac{1}{2} *2*x^{\frac{1}{2}}\ |_1^4  +\frac{x^3}{3}\ |_1^4=\\ =5*(ln4-ln1)-\sqrt{x} \ |_1^4+\frac{4^3}{3} -\frac{1^3}{3} =5*(ln4-0)-(\sqrt{4}-\sqrt{1})+\frac{64}{3}-\frac{1}{3} = \\ =5ln4-(2-1)+\frac{63}{3} =5ln4-1+21=5ln4+20\approx27.

Похожие вопросы
Предмет: Русский язык, автор: комаріканя
Предмет: Русский язык, автор: василек231